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Roman Boča1;� and Wolfgang Linert2

1 Department of Inorganic Chemistry, Slovak University of Technology,

SK-812 37 Bratislava, Slovakia
2 Institute of Applied Synthetic Chemistry, Vienna University of Technology,

A-1060 Vienna, Austria

Received April 10, 2002; accepted (revised) April 17, 2002

Published online October 7, 2002 # Springer-Verlag 2002

Summary. The existing models of the low-spin to high-spin transition (spin crossover) are briefly

reviewed. Experimental data pointing to a need of new models are displayed. A statistical model with

the distribution of the solid-state cooperativeness is outlined. A modeling is shown as well as its

application to a spin crossover system [Fe(bzimpy)2](ClO4)2 � 0.25H2O. This shows an abrupt spin

crossover at temperature as high as 403 K with a hysteresis width of 12 K. The angled walls of the

hysteresis loop can be followed by the outlined statistical model.
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Introduction

Several transition metal complexes, especially those with d4 to d7 metal ion con-
figuration, can exist either in the low-spin (LS) or high-spin (HS) states. Excep-
tionally, they can exist also in an intermediate-spin (IS) state. When the high-spin
state is the ground-one, this is not altered by the temperature variation. However,
when the ground state is the low-spin, a spin transition to the high-spin state can
occur (Fig. 1).

There are two conditions for the spin crossover:

1. the enthalpy change (that includes the electronic and the vibrational contribu-
tion) should be positive

�H ¼ ðEel
HS þ "vib

HSÞ � ðEel
LS þ "vib

LS Þ>0 ð1Þ
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2. the entropy change (in the first, very crude approximation given by the elec-
tronic state degeneracy gel) should be positive

�S ¼ k ln gel
HS � k ln gel

LS ¼ k ln

�
gel

HS

gel
LS

�
>0 ð2Þ

Consequently the Gibbs energy �G ¼ �H � T ��S passes through the zero at
the transition (critical) temperature (Fig. 2).

Tc ¼ �H=�S ð3Þ
and the vant’ Hoff plot, i.e. ln K vs. (1=T), is a straight line intercepting zero at
the transition temperature

ln K ¼ ln
xHS

xLS

¼ ln
xHS

1 � xHS

ð4Þ

ln K ¼ ��G

RT
¼ ��H

RT
þ�S

R
ð5Þ

The slope of the vant’ Hoff plot determines the enthalpy change whereas the
intercept with the abscissa (when 1=T! 0) determines the entropy change. All
these estimates are valid for a perfect fulfillment of the Boltzmann statistics when
the deviations (the solid state cooperativeness) are negligible. When the entropy
change would vanish, the system does not show the spin crossover: it stays low-
spin.

The above requirements are well fulfilled for d6 systems – iron(II) complexes.
The ground low-spin state is 1A1g and this transforms to the high-spin excited state
5T2g. The enthalpy change is positive owing to the promotion of electrons from

Fig. 1. Circumstances of the spin crossover
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non-bonding t2g orbitals to the antibonding eg-ones (the energetically unfavorable
process). The entropy change is positive as gel

LS ¼ 1 and gel
HS ¼ 3	 5. When the or-

bital degeneracy is removed on symmetry lowering, the high-spin state 5A1g will
possess gel

HS ¼ 5 giving rise to the lowest estimate of�S ¼ R ln 5 ¼ 13:6 JK�1 mol�1.
The spin crossover can be monitored by several experimental techniques as

listed in Table 1. However the monitored properties can be transformed to a com-
mon basis that is the high-spin mole fraction xHS. For more deep information the
reader should consult the literature [1–9].

Hamiltonian and Kets

The Hamiltonian appropriate for the spin crossover system is a two-level Ising-like
Hamiltonian of the form

ĤH ¼ ð�0=2Þ�̂�� Jh�i�̂� ð6Þ
where �̂� – operator of a fictitious spin that distinguishes between the LS and HS,
�0 – site formation energy (energy difference LS–HS), and J>0 – ‘‘ferromag-
netic’’-like or ‘‘cooperative’’ interaction (the sign in front of J is a matter of the

Table 1. Experimental monitoring of the spin crossover

Experimental method Monitored property LS�!T HS

Magnetic measurements (MM) magnetic susceptibility, effective magnetic moment,

low�!T high

Mössbauer spectra (MS) quadrupole splitting, low�!T high for Fe(II)

Vibrational spectra (IR) M-L stretching wavenumber, high�!T low

Electron spectra (ES) excitation energy, low�!T high

Calorimetric measurements (DSC) heat capacity, low�!T high, a lambda-peak

X-ray diffraction cell parameters, volume of the unit cell, low�!T high

Extended X-ray absorption fine metal-ligand distances, low�!T high

structure (EXAFS)

Nuclear magnetic resonance paramagnetic shift, effective magnetic moment,

(NMR) in solutions low�!T high

Volumetric measurements (VM) partial molar volume, low�!T high

Electron spin resonance (ESR) absorption, g-factor, no ðS ¼ 0Þ�!T yes

Fig. 2. Temperature variation of the Gibbs energy (left) and the vant’ Hoff plot (right) for a spin

crossover system
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convention; this parameter not to be confused with the exchange constant). The
thermal average of the fictitious spin h�i acts as a mean-field term and it is

h�i ¼
P

i �i expð�Ei=kTÞP
i expð�Ei=kTÞ ð7Þ

It scales the high-spin mole fraction as follows

xHS ¼ ð1 þ h�iÞ=2 ð8Þ
The kets act as follows

�̂�j � 1i ¼ �1 ð9Þ

�̂�j þ 1i ¼ þ1 ð10Þ
and they yield two energy levels (Fig. 3)

E1ð� ¼ �1Þ ¼ ��0=2 þ Jh�i ð11Þ

E2ð� ¼ þ1Þ ¼ þ�0=2 � Jh�i ð12Þ
The key problem of the Ising-like model and its variants is the determination of the
thermal average of the fictitious spin. There are two routes for such a purpose.

1) The equilibrium constant of a unimolecular reaction LS$HS is expressed
through the reaction Gibbs energy

K ¼ expð��rG=RTÞ ¼ exp½�ðG0
T ;HS � G0

T ;LSÞ=RT � ð13Þ
On ignoring the difference between �F and �G for a solid sample (equivalent
but distinguishable particles are assumed)

G � F ¼ �RT ln z ð14Þ
where

zLS ¼ zel
LS � zvib

LS ð15Þ
stands for the partition function of the given reactant (LS) and product (HS),
respectively. Then

K ¼ zel
HS � zvib

HS

zel
LS � zvib

LS

ð16Þ

Fig. 3. Energy levels for the Ising-like Hamiltonian
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On the other hand there is

K ¼ xHS

xLS

¼ xHS

1 � xHS

¼ 1 þ h�i
1 � h�i ð17Þ

from where one gets the equation

h�i ¼ �1 þ K

þ1 þ K
ð18Þ

2) A direct application of the Boltzmann statistics for two possible values of the
fictitious spin yields (the total partition function is applied)

h�i ¼ ð�1Þzel
LS � zvib

LS þ ðþ1Þzel
HS � zvib

HS

zel
LS � zvib

LS þ zel
HS � zvib

HS

¼ �1 þ K

þ1 þ K
ð19Þ

where the expression for K is identical as above.
For the two-level Ising-like model the electronic partition functions are

zel
LS ¼ gel

LS exp½�ð��0=2 þ Jh�iÞ=kT � ð20Þ

zel
HS ¼ gel

HS exp½�ðþ�0=2 � Jh�iÞ=kT � ð21Þ
and thus the equilibrium constant becomes

K ¼
�

zvib
HS � gel

HS

zvib
LS � gel

LS

�
exp½�ð�0 � 2Jh�iÞ=kT � ð22Þ

In the simplest case – the model A – a constant preexponential factor is
assumed and termed the effective degeneracy ratio

reff ¼
�

zvib
HS � gel

HS

zvib
LS � gel

LS

�
ð23Þ

Then the implicit equation is to be obeyed

h�i ¼ �1 þ reff exp½�ð�0 � 2Jh�iÞ=kT �
þ1 þ reff exp½�ð�0 � 2Jh�iÞ=kT � ð24Þ

and this needs to be solved through an iterative procedure. The free parameters
of the model are: reff, �0 and J. These microscopic parameters are related to the
thermodynamic quantities through

�S ¼ R ln reff ð25Þ

�H ¼ NA�0 ð26Þ
The involvement of the molecular vibrations – the model B – proceeds through
the vibration partition function

zvib
LS ¼

Y3n�6

i¼1

expð�hvLS;i=2kTÞ
1 � expð�hvLS;i=kTÞ

¼ exp

�X3n�6

i¼1

ðhvLS;i=2kTÞ
� Y3n�6

i¼1

1

1 � expð�hvLS;i=kTÞ ð27Þ
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and analogously for the HS molecules. Then the equilibrium constant becomes
expressed as

K ¼
�

gel
HS

gel
LS

�� Y3n�6

i¼1

1 � expð�hvLS;i=kTÞ
1 � expð�hvHS;i=kTÞ

�

expf�½�0 þ ð"HS � "LSÞ � 2Jh�i�=kTg ð28Þ
where the energy of the zero-point vibration was summed up over all vibration
modes

"LS ¼ 1

2

X3n�6

i¼1

hvLS;i ð29Þ

and analogously for the HS.

There are two approximations to the model:

1. The relevant (low-energy) modes are averaged to give h�vvLS and h�vvHS; then

K ¼
�

gel
HS

gel
LS

��
1 � expð�h�vvLS=kTÞ
1 � expð�h�vvHS=kTÞ

�3n�6

expf�½�0 þ ð3n � 6Þ=2ðh�vvHS � h�vvLSÞ � 2Jh�i�=kTg ð30Þ
2. In the limit of low vibration frequencies hv� kT is fulfilled. Then the expo-

nentials can be expanded into a Taylor series and their truncation after the
second term yields

K ¼
�

gel
HS

gel
LS

��
h�vvLS

h�vvHS

�3n�6

expf�½�0 þ ð3n � 6Þ=2ðh�vvHS � h�vvLSÞ � 2Jh�i�=kTg

ð31Þ
and now

reff ¼
�

gel
HS

gel
LS

��
h�vvLS

h�vvHS

�3n�6

ð32Þ

�eff ¼ �0 þ ð3n � 6Þ=2ðh�vvHS � h�vvLSÞ ð33Þ
For hexacoordinate Fe(II) complexes 15 vibrational modes of the chromophore
are relevant and the experimental data show that ðh�vvLSÞ � 1:5ðh�vvHSÞ. Then the
rough estimate is reff¼ 5(1.5)15¼ 2189 and consequently �S¼R ln reff¼ 8.3	
ln(2189)¼ 64 J K� 1 mol� 1.

Final Formulae and Modeling

The final formulae of the Ising-like model of the spin crossover are collected in
Table 2. A modeling is given by Fig. 4 and the following important findings be-
come evident.

1. An increase of �H (at constant �S) raises the transition temperature.
2. An increase of �H, and simultaneous accommodation of �S to keep the transi-

tion temperature Tc¼�H=�S constant, causes an increased abruptness of the
conversion curve xHS¼ f(T).
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3. The increased domain size raises the abruptness of the conversion curve.
4. The increased cooperativeness causes a non-linearity near Tc (inverse S-shaped

curvature) in the van’t Hoff plot. above the critical value of J > kTc a hysteresis
is obtained: the conversion curves on the heating and the cooling directions have
different profiles.

5. The role of the vibrations makes a non-linearity of the van’t Hoff line at low
temperature; in an extreme case the system can return to the high-spin state on
cooling.

Table 2. Formulae of the Ising-like models for mononuclear spin crossover systems

Derivation Hamiltonian ĤH ¼ ð�0=2Þ�̂�� Jh�i�̂� in mean-field approximation

�0 – site formation energy (energy difference EHS�ELS)

J>0 – ‘‘ferromagnetic’’-like or ‘‘cooperative’’ interaction

Implicit equation h�iT ¼ �1 þ f ðh�iTÞ
1 þ f ðh�iTÞto be iterated

High-spin mole fraction xHS¼ (1þh�i)=2

Model A f (A)¼ reff exp[� (�0� 2Jh�iT)=kT]

(Ising-like) reff¼ relrvib>5 – effective degeneracy ratio; rel ¼ gel
HS=gel

LS

�S¼R ln reff; �H¼NA�0

Model B f (B)¼ reff(T)	 exp{� [�eff� 2Jh�iT]=kT}

(Ising-like & vibrations)
reffðTÞ ¼

gel
HS

gel
HS

�
1 � expðh�vvLS=kTÞ
1 � expðh�vvHS=kTÞ

�m

�eff ¼ �0 þ mðh�vvHS � h�vvLSÞ=2

m – active modes (m¼ 15 for a hexacoordinate complex)

h�vvHS and h�vvLS – averaged vibration energies

Model C f (C)¼ exp{� [�H�T�S� �(2xHS� 1)]n=RT}

(Ising-like & domains) ¼ exp{� [�0� kT ln reff� 2Jh�iT]n=kT}

n – optimum domain size

Model D f
ðDÞ
i ¼ expf�½�0 � kT ln reff � 2niJh�iiT �=kTg

(Ising-like & parameter xi¼ (1þh�iiT)=2

distribution) wi� exp[� (ni� nopt)
2=�] – Gaussian distribution

xHS ¼
XMesh

i¼1

wi � xi

" #, XMesh

i¼1

wi

" #
– a statistical average

Equilibrium constant ln K ¼ ln
xHS

1 � xHS

¼ �½�H � T�S þ �ð1 � 2xHSÞ�n=RT

Need of New Models?



Extensions of the Ising-Like Model

Two basic derivations for the spin crossover models were presented in literature:

1) former thermodynamic approach starting with the mixing entropy, postulated
interaction terms, the Gibbs energy and its stationery with respect to xHS;

2) a novel microscopic approach starting with the postulated Hamiltonian, derived
energy levels, partition function, and the thermodynamic properties.

Thermodynamic Approach

a) The mixing entropy is expressed through the statistical probability of the state.
In an assembly of N molecules there is a number of xHSN molecules in the HS
state and the residual number of (1� xHS)N molecules in the LS state. The
mixing entropy Smix accounts for the fact that there are several ways of

Fig. 4. Modeling of the spin crossover with the Ising-like model. Individual lines (full, long dashed,

short dashed) correspond to the increase of a varied parameter
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distributing the LS and HS molecules within the assembly of N molecules

Smix ¼ k ln W ¼ k ln
N!

ðxNÞ!½ð1 � xÞN�!
¼ kfN ln N � xN lnðxNÞ � ð1 � xÞN ln½ð1 � xÞN�g
¼ �kNfx ln x þ ð1 � xÞ lnð1 � xÞg ð34Þ

where we applied the Stirling formula for the factorials (x� xHS for the sake of
clarity).

b) When the formation of domains of like spin is assumed then the number of
molecules per domain is n¼N=D if the domains have a uniform size. The
mixing entropy alters to

Smix ¼ k ln
D!

ðxDÞ!½ð1 � xÞD�! ¼ �kDfx ln x þ ð1 � xÞ lnð1 � xÞg ð35Þ

For one mole (N¼NA) of molecules the molar mixing entropy can be rewritten
as

Smix ¼ �ðR=nÞfx ln x þ ð1 � xÞ lnð1 � xÞg ð36Þ
where R¼NAk holds true.

c) The intermolecular interaction term Ix can be expressed in the general form

Ix ¼ ILLð1 � xÞ2 þ 2ILHxð1 � xÞ þ IHHx2 ¼ J0 þ J1x þ J2x2 ð37Þ
where ILL, ILH, IHH refer to interactions between LS–LS, LS–HS and HS–HS
pairs, respectively. Then J0¼ ILL, J1¼ 2(ILH� ILL), and J2¼ ILLþ IHH� 2ILH.

d) The molar Gibbs energy can be constructed from the following contributions

Gx ¼ xGHS þ ð1 � xÞGLS � TSmix þ Ix ð38Þ
where GHS (GLS) is the molar Gibbs energy for the HS (LS) molecules.

e) The condition for the equilibrium demands�
@Gx

@x

�
T ;p

¼ GHS � GLS þ ðR=nÞT ln

�
x

1 � x

�
þ J1 þ 2J2x ¼ 0 ð39Þ

from where one gets the final, implicit equation for the high-spin mole fraction

x ¼ 1

1 þ exp½nð�H � T�S þ J1 þ 2J2xÞ=RT� ð40Þ

The last, very general equation – model C has many links to more approximate
models as reviewed by Table 3.

The basic assumption of the solution model is that the interaction term involves
the cooperativeness � through the form

Ix ¼ �xð1 � xÞ ð41Þ

This formula has its origin in the intercentre interaction

Ix ¼ J0 þ J1x þ J2x2 ¼ ILL þ 2ðILH � ILLÞx þ ðILL þ IHH � 2ILHÞx2 ð42Þ

Need of New Models?



Table 3. Review of the spin crossover models

Model Parameters x¼ f(T)

Ix¼ J0þ J1xþ J2x2

1. Thermodynamic models

Domain model J1¼ J2¼ 0 x¼ 1={1þ exp(n�G=RT)}

Sorai & Seki [10]

Solution model J1¼ � J2¼ �; x¼ 1={1þ exp[(�Gþ �� 2�x)=RT]}

Drickamer [11] Ix¼ �x(1� x)

Interaction model J16¼0, J2 6¼0 x¼ 1={1þ exp[(�Gþ J1þ 2J2x)=RT]}

McGarvey et al. [12]

Zimmermann & J1¼ 0, J2¼ � J x¼ 1={1þ exp[(��RT ln Z� 2Jx)=RT]}

König [13]

Spiering et al. [14, 15] J1¼�x, J2¼ ��x x¼ 1={1þ exp[(�Gþ�x� 2�xx)=RT]}

Interaction & domain J1 6¼ 0, J2 6¼ 0 x¼ 1={1þ exp[n(�H� T�Sþ J1þ 2J2x)=RT]}

[16]

Interaction model for

two-step and

binuclear systems

[35, 28]

2. Microscopic models

Ising-like [17, 18]; ÎI� ¼ �Jh�i�̂� x¼ 1={1þ exp[(�0� kT ln reff� 2J(2x� 1))=kT]}

model A h�i¼ 2x� 1

Ising-like with ÎI� ¼ �Jh�i�̂� x¼ 1={1þ exp[(�eff� kT ln reff,T� 2J(2x� 1))=kT]}

vibrations [19]; h�i¼ 2x� 1

reff;T ¼ gel
HS

gel
HS

�
1 � expðh�vvLS=kTÞ
1 � expðh�vvHS=kTÞ

�m

model B

�eff ¼ �0 þ mðh�vvHS � h�vvLSÞ=2

Ising-like & domain ÎI� ¼ �Jh�i�̂� x¼ 1={1þ exp[n(�eff� kT ln reff,T� 2J(2x� 1))=kT]}

model; h�i¼ 2x� 1

model C

Parameter xHS ¼
XMesh

i¼1

wi � xi

" #, XMesh

i¼1

wi

" #
xi¼ 1={1þ exp[(�eff� kT ln reff,T� 2niJ(2xi � 1))=kT]}

distribution [20];

model D

Two-step Ising-like h�Ai ¼
�1 þ reff expf�½�0 � 2ðJAh�Ai þ JABh�BiÞ�=kTg
1 þ reff expf�½�0 � 2ðJAh�Ai þ JABh�BiÞ�=kTg

[21]

h�Bi ¼
�1 þ reff expf�½�0 � 2ðJBh�Bi þ JABh�AiÞ�=kTg
1 þ reff expf�½�0 � 2ðJBh�Bi þ JABh�AiÞ�=kTg

1D-Ising-like [29]

Ising-like for x¼ (2þh�Aiþ h�Bi)=4 h�Ai¼ [� exp(�E1=kT)� reff exp(�E2=kT)

binuclear compounds þreff expð�E3=kTÞ þ r2
eff expð�E4=kTÞ�=Z0

[22] h�Bi¼ [� exp(�E1=kT)þ reff exp(�E2=kT)

�reff expð�E3=kTÞ þ r2
eff expð�E4=kTÞ�=Z0

Z0¼ [exp(�E1=kT)þ reff exp(�E2=kT)

þreff expð�E3=kTÞ þ r2
eff expð�E4=kTÞ�

(continued)
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yielding the relationship within the solution and=or solution & domain model as
follows

@Ix

@x
¼ J1 þ 2J2x ¼ ðJ1 þ J2Þ � J2ð1 � 2xÞ ¼ �ð1 � 2xÞ ð43Þ

The remainder

J1 þ J2 ¼ IHH � ILL ð44Þ
is thought either to vanish or to be absorbed to the effective parameter �eff. Then
the cooperativeness becomes

� ¼ �J2 ¼ 2ILH � ILL � IHH ð45Þ
This means an excess of the interaction energy between the molecules of the
different spin relative to the interaction energy of the molecules of the like spin.
It is a measure of the tendency for molecules of one type to interact effectively (to
be surrounded) by molecules of the like spin.

The solution model, in fact, is fully equivalent to the two-level Ising-like model
through the correspondence �=R¼ 2J.

Model of a Parameter Distribution

This model has been motivated by the fact that the solid state samples are far from
their ideal behavior and some drop in the cooperativeness could be described
through a statistical distribution. As the sizable cooperativeness is responsible
for the eventual hysteresis, the above effect will manifest itself in the profile of
the conversion curve.

The key idea of this model D is that the optimum cooperativeness drops as

Ji ¼ niJ ð46Þ
Here i is the mesh point, say 1=100 of the value of nopt¼ 1. Then the factor
entering the implicit equation for h�ii becomes

f
ðDÞ
i ¼ expf�½�0 � kT ln reff � 2niJh�ii�=kTg ð47Þ

The equation is to be iterated for the given trial set of parameters (�0, reff, J), for a
given temperature, and for the given mesh point. Moreover, the iteration should

Table 3 (continued)

Model Parameters x¼ f(T)

Ix¼ J0þ J1xþ J2x2

E1¼ ��0þ (h�Aiþ h�Bi)(Jþ J0)� JAB

E2¼ (h�Ai� h�Bi)(J� J0)þ JAB

E3¼ � (h�Ai� h�Bi)(J� J0)þ JAB

E4¼�0� (h�Aiþ h�Bi)(Jþ J0)� JAB

3. Other models

Vibronic models

(electron–phonon

coupling) [13, 23]

Need of New Models?



start differently for the data point taken in the heating direction (�
ð0Þ;"
i ¼ �1 is used

as an initial trial) and the cooling direction (�
ð0Þ;#
i ¼ þ1). The statistical average is

provided by the formula

xHS ¼
XMesh

i¼1

wi � xi

" #, XMesh

i¼1

wi

" #
ð48Þ

where the weights can be determined from the postulated distribution, e.g. the
Gaussian distribution in the form of

wi � exp½�ðni � noptÞ2=�� ð49Þ
Additional parameter � determines the width of the distribution (Fig. 5):

1) for �� 0 a sharp distribution exists and the model D collapses to the model C
(or A) with fixed parameters. The hysteresis loop of the conversion curve pos-
sesses the rectangular walls.

2) The increase of � manifests itself in angled walls of the hysteresis loop and
decreased hysteresis width.

3) At the same time the completeness of the spin crossover is lowered and the con-
version curve becomes smoother, resembling suppress of the cooperativeness.

The existence of the hysteresis originates in the fact that the Gibbs energy
possesses two minima at different temperature; the system falls into one of them
depending on the history of the heating=cooling regime.

Model for Two-Step Spin Crossover

Some compounds exhibit a spin crossover of the form that the fraction xHS of
molecules in the HS state increases with temperature in two steps; a plateau of a
few K exists between these steps. This behavior can be explained by considering
two sublattices (A and B) containing the same number of molecules [21]. The
Ising-like Hamiltonians corresponding to the respective lattices, in the mean field
approach, are defined as follows

ĤHA ¼ ð�0=2Þ�̂�A � ðJAh�Ai þ JABh�BiÞ�̂�A ð50Þ

ĤHB ¼ ð�0=2Þ�̂�B � ðJBh�Bi þ JABh�AiÞ�̂�B ð51Þ
where JA and JB are the intra-sublattice interaction parameters for A � � �A and
B � � �B pairs; JAB is the inter-sublattice interaction parameter for A � � �B pairs.
Their positive values mean a ‘‘ferromagnetic-like’’ or cooperative interaction.
The mole fractions of the HS state are interrelated through

h�Ai ¼ 2xA � 1 ð52Þ

h�Bi ¼ 2xB � 1 ð53Þ
The corresponding eigenvalues are

EA2 ¼ ð�0=2Þ � ðJAh�Ai þ JABh�BiÞ ð54Þ

EA1 ¼ �ð�0=2Þ þ ðJAh�Ai þ JABh�BiÞ ð55Þ
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EB2 ¼ ð�0=2Þ � ðJBh�Bi þ JABh�AiÞ ð56Þ

EB1 ¼ �ð�0=2Þ þ ðJBh�Bi þ JABh�AiÞ ð57Þ

Fig. 5. Modeling of the spin crossover with a Gaussian distribution of the cooperativeness for

�¼ 0.00001, 0.01, 0.1, and 1.0. The other spin-crossover parameters were fixed (�0=k¼ 2144 K,

J=k¼ 452 K, reff¼ 205; gHS¼ 2.0); 0�ni�nopt¼ nmax¼ 1
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Thermal population within the Boltzmann statistics yields

h�Ai ¼
�1 þ KA

1 þ KA

ð58Þ

where

KA ¼ zA;HS

zA;LS

¼ gel
HS expð�EA2=kTÞ

gel
LS expð�EA1=kTÞ ¼ reff exp½�ðEA2 � EA1Þ=kT � ð59Þ

reff ¼ gel
HS=gel

LS ð60Þ
and analogously for the sublattice B. Then two coupled equations should be ful-
filled simultaneously

h�Ai ¼
�1 þ reff expf�½�0 � 2ðJAh�Ai þ JABh�BiÞ�=kTg
1 þ reff expf�½�0 � 2ðJAh�Ai þ JABh�BiÞ�=kTg ð61Þ

h�Bi ¼
�1 þ reff expf�½�0 � 2ðJBh�Bi þ JABh�AiÞ�=kTg
1 þ reff expf�½�0 � 2ðJBh�Bi þ JABh�AiÞ�=kTg ð62Þ

These equations can be solved by an iterative procedure. The free parameters of the
model cover JA, JB, JAB, �0, and reff. For modeling see Fig. 6.

Fig. 6. Modelling of the spin crossover for a two-step case and a binuclear complex
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Model for Binuclear Compounds

The case of the binuclear compounds formed of a symmetric pair of metallic
centers the Ising-like Hamiltonian is

ĤH ¼ �JABð�̂�A � �̂�BÞ þ
�0

2
ð�̂�A þ �̂�BÞ � Jðh�Ai�̂�A þ h�Bi�̂�BÞ � J0ðh�Ai�̂�B þ h�Bi�̂�AÞ

The intracomplex A–B interaction parameter JAB adopts positive values for a
‘‘ferromagnetic-like’’ (cooperative) interaction of the fictitious spins. This has
nothing to do with the isotropic exchange coupling constant Jex that determines
the energy levels in a binuclear system and has some connection to the site-
formation energy. The intermolecular interaction parameters are J for A � � �A
and B � � �B pairs, and J0 for A � � �B and B � � �A, respectively (these are eventually
neglected). The energy levels results in the form (see Fig. 7)

E1ð�A ¼ �1; �B ¼ �1Þ ¼ ELL ¼ ��0 þ ðh�Ai þ h�BiÞðJ þ J 0Þ � JAB ð63Þ

E2ð�A ¼ �1; �B ¼ þ1Þ ¼ ELH ¼ ðh�Ai � h�BiÞðJ � J0Þ þ JAB ð64Þ

E3ð�A ¼ þ1; �B ¼ �1Þ ¼ EHL ¼ �ðh�Ai � h�BiÞðJ � J0Þ þ JAB ð65Þ

E4ð�A ¼ þ1; �B ¼ þ1Þ ¼ EHH ¼ �0 � ðh�Ai þ h�BiÞðJ þ J0Þ � JAB ð66Þ
The partition function of the system is constructed as follows

Z ¼
X4

i¼1

gi expð�Ei=kTÞ

¼ g2
LS½expð�E1=kTÞþ reff expð�E2=kTÞþ reff expð�E3=kTÞþ r2

eff expð�E4=kTÞ�

Fig. 7. A relationship between the energy levels of the isotropic (Heisenberg) exchange (left) and

the Ising-like model of the spin crossover (right) for a binuclear Fe(III) complex. Degeneracies of the

respective energy levels are given in parenthesis

Need of New Models?



where the effective degeneracy ratio, reff, occurs. The thermal average of the indi-
vidual (formal) spin values are calculated as follows

h�Ai ¼
X4

i¼1

�A;igi expð�Ei=kTÞ

¼ g2
LS½� expð�E1=kTÞ � reff expð�E2=kTÞ

þ reff expð�E3=kTÞ þ r2
eff expð�E4=kTÞ�=Z ð67Þ

and

h�Bi ¼ g2
LS½� expð�E1=kTÞ þ reff expð�E2=kTÞ � reff expð�E3=kTÞ

þ r2
eff expð�E4=kTÞ�=Z ð68Þ

Such a pair of the coupled equations can be solved by an iterative procedure. When
J¼ J0 are assumed, the values of h�Ai and h�Bi are necessarily equal. Finally, the
high-spin mole fraction is

x ¼ ð2 þ h�Ai þ h�BiÞ=4 ð69Þ
The modeling is shown in Fig. 6 and some recent applications were presented

elsewhere [24].

Application of the Distribution Model

A need of the new spin crossover model has been motivated by some experimental
facts that could not be explained by previous models. The molecular complex
[Fe(bzimpy)2](ClO4)2 � 0.25H2O (hereafter 1) was identified as a spin crossover
system with high transition temperature of Tc¼ 403 K and a hysteresis width of
12 K. This is true for a freshly prepared microcrystalline sample [20]. On the
sample aging and its treatment like graining a marked loss of the cooperativeness
is observed which manifests in these features of the conversion curve: 1) the
hysteresis width becomes lower; 2) the wall of the hysteresis loop become more
angled; 3) a back-ground signal increases; 4) the conversion seem be incomplete.
The distribution model D is quite successful in reproducing of all these features, as
shown in Fig. 8.

One could expect that the above model can be applied to some other cases. A
loss of the cooperativeness has been identified for [Fe(PM-BiA)2(NCS)2] when
passing from the crystalline sample 1 to its powder counterpart 2 prepared by a
fast precipitation [25]. The dilution of the [Fe(ptz)6](BF4)2 complex in an analo-
gous Zn-matrix led to a systematic decrease of the abruptness (cooperativeness) of
the conversion curves as well as a decrease of Tc that correlates with the dilution
degree [26]. A decrease of the transition temperature along with a change of the
profile of the conversion curve has been observed in [Fe(pap)2]ClO4 system as a
time effect [27]: one weak after preparation gave a substantial effect.

Remember that the cooperativeness has its origin in the intercentre interaction
(irrespective of its nature). Thus any break of such an interaction (point defects,
dislocations, surfaces, hetero-atoms, degradation and oxidation products) will low-
er cooperativeness in a statistical manner.
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A Need of New Models

Not all experimental data were reproduced satisfactorily by the existing models of
the spin crossover. The first problem occurs when the hysteresis loop possesses a
strong asymmetry as found experimentally many times [30–33].

Second, a general, appropriate model should recover not only the conversion
curve (usually constructed of the magnetic susceptibility data or the Mössbauer
spectra data) but also the whole profile of the heat capacity [34].

Third, there are three-nuclear and polynuclear complexes exhibiting the spin
crossover. A successful model for them is absent so far.

Fourth, a more complete inclusion of the interactions in the solid state is
feasible, as outlined elsewhere [28, 35].

Fig. 8. Temperature variation of the effective magnetic moment (open symbols) for samples of 1

with different history (top – a one year-old sample, center – three-month old and powdered sample,

bottom – a freshly prepared microcrystalline sample). Full points – fitted data using the theoretical

model D. Solid line (center) – predicted. Dashed line – a theoretical curve in the absence of the

cooperativeness
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